Rho-dependent termination within the trp t' terminator. II. Effects of kinetic competition and rho processivity.

نویسندگان

  • A Q Zhu
  • P H von Hippel
چکیده

Continuing our quantitative analysis of rho-dependent termination at the trp t ' terminator, we here present evidence that the position of rho-dependent terminators along the template is strongly regulated by the secondary structure of the nascent RNA transcript, and that the prerequisite for establishing an effective kinetic competition between elongation and rho-dependent RNA release at a particular termination position is an upstream rho hexamer properly bound to a rho loading site on the nascent transcript. As a consequence kinetic competition regulates termination efficiency at individual positions downstream of the rho loading site, but does not control the position of the termination zone. Conditions that favor the formation of stable secondary structure on the RNA shift the initial rho-dependent termination position downstream. These results are consistent with a model that states that the rho protein requires approximately 70-80 nucleotide residues of unstructured RNA to load onto the transcript and cause termination, and that stable RNA secondary structures are effectively "looped out" to avoid interaction with rho, meaning that more RNA must be synthesized before rho-dependent termination can begin. Thus, although the rate of transcript elongation is important in determining termination efficiency at specific template positions, the process of loading of the rho hexamer onto the nascent transcript plays an overriding role in determining the template positions of rho-dependent terminators. We also show that at high salt concentrations, which have virtually no effect on the rate of transcript elongation, rho-dependent transcript termination is more directly dependent on the efficiency of rho loading, since the processivity of translocation of rho along the nascent transcript to "catch up with" the polymerase is much more limited under these conditions. A quantitative model for rho-dependent transcript termination is developed to account for all these interacting effects of rho on the efficiency of RNA release from actively transcribing elongation complexes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rho-dependent termination within the trp t' terminator. I. Effects of rho loading and template sequence.

About one-half of the terminators of the Escherichia coli genome require transcription termination factor rho to function. Here we use the very "diffuse" trp t' terminator of E. coli to show that both template sequence and transcript secondary structure are involved in controlling the template positions and efficiencies of rho-dependent termination. Termination begins in the wild-type trp t' te...

متن کامل

Activation of Rho-dependent transcription termination by NusG. Dependence on terminator location and acceleration of RNA release.

There is a kinetic limitation to Rho function at the first intragenic terminator in the lacZ gene (tiZ1) which can be overcome by NusG: Rho can terminate transcription with slowly moving, but not rapidly moving, RNA polymerase unless NusG is also present. Here we report further studies with two other Rho-dependent terminators that are not kinetically limited (tiZ2 and lambda tR1) which show tha...

متن کامل

NusG is required to overcome a kinetic limitation to Rho function at an intragenic terminator.

Rho-dependent transcription termination at certain terminators in Escherichia coli also depends on the presence of NusG [Sullivan, S. L. & Gottesman, M. E. (1992) Cell 68, 989-994]. We have found that termination at the first intragenic terminator in lacZ (tiZ1) is strongly dependent on NusG when transcription is done in vitro with the concentrations of NTPs found in vivo. With a lower level of...

متن کامل

Mutations in the ATP-binding domain of Escherichia coli rho factor affect transcription termination in vivo.

Five mutant rho proteins, representing alterations at three different locations in the Escherichia coli rho gene that affect ATP hydrolytic activity but not RNA binding, were examined in vivo for function at the rho-dependent IS2 and bacteriophage lambda tR1 terminators. The altered amino acids in rho are located at highly conserved residues near the beta 1 and beta 4 strands of the hydrophobic...

متن کامل

Structure of rho factor: an RNA-binding domain and a separate region with strong similarity to proven ATP-binding domains.

The domain structure of rho protein, a transcription termination factor of Escherichia coli, was analyzed by oligonucleotide site-directed mutagenesis and chemical modification methods. The single cysteine at position 202, previously thought to be essential for rho function, was changed to serine or to glycine with no detectable effects on the protein's hexameric structure, RNA-binding ability,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 37 32  شماره 

صفحات  -

تاریخ انتشار 1998